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The velocities, accelerations and drag forces experienced by two equal spheres 
falling along their line of centres in a viscous fluid were determined for three 
groups of Reynolds numbers R in the range where it is commonly assumed that 
Stokes’s approximation applies. For all groups, with R ranging between 0.060 
and 0.216, both spheres continually acclerated as they fell, and the upper sphere 
fell faster and accelerated more than the lower one. In  contrast to Stimson & 
Jeffery’s (1926) theory, which is based on the Stokes approximation, and to most 
earlier experimenters, the drag-force coefficients of the upper sphere computed 
from the experiments were significantly smaller than those for the lower sphere. 
Oseen’s theory for this case agreed with the experiments in some respects, but 
contrary to it the drag-force coefficient varied with R for the upper sphere as well 
as the lower sphere. 

1. Introduction 
The application of hydrodynamic theory to the behaviour of solid and liquid 

particles moving in a viscous medium at low Reynolds numbers has received 
increased attention in recent years in connexion with problems in chemical 
engineering, geological engineering, air chemistry, and cloud and precipitation 
physics. The studies of colloids and aerosols, for instance, require solutions of 
the many-body problem. 

In cloud physics the problem enters importantly in considering drop growth 
by accretion. The drops are sufficiently sparse so that ordinarily attention can be 
confined to the interaction of two of them at a time, and the rate at  which pre- 
cipitation-sized drops can form by collection of cloud drops depends critically on 
the collision efficiency, which measures the probability that a drop below the 
collector drop will collide with it rather than being carried around it by the vis- 
cous drag of the medium. In  the case of two drops with centres vertically one 
above the other collision would occur unless they move with equal velocities, 
but for sufficiently large Reynolds numbers the asymmetry of the flow assures 
unequal velocities even for equal spheres. 

Studies have shown that on the one hand clouds formed by condensation- 
for instance, in the updraft in a convective cloud-tend to consist of small drops, 
modal radius between 5 and lOpm, with relatively little dispersion of sizes, i.e. 
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most of the drops are nearly equal; and on the other hand the collision efficiency 
for drops smaller than 2Opm is practically zero (Hocking 1959; Davis & Sartor, 
1967). The conclusion derived from these studies is that clouds require larger 
drops or ice crystals to produce precipitation. 

The indication that the collision efficiency for equal drops is very large (Telford, 
Thorndyke & Bowen 1955; Woods & Mason 1965) ledus to look into the question, 
for how small drops will the asymmetry of flow lead to non-zero collision effi- 
ciencies for equal drops? To study this question we have carried out experiments 
with pairs of equal solid spheres falling in oil. 

The theoretical and experimental studies previously reported on the interaction 
of spheres falling in a viscous medium have been summarized by Happel & 
Brenner (1965). It is apparent from their discussion that the theoretical treat- 
ment of this subject involves great mathematical difficulties, even for the case 
of only two spheres in an unbounded incompressible fluid. Consequently the 
problem has been solved only when certain simplifying and restrictive assump- 
tions are made, and then usually only approximately. Among the investigators 
who have dealt with the problem of two spheres moving in a viscous fluid are 
Smoluchowski (1911, 1912), Faxen & Dahl (1925), Stimson & Jeffery (1926), 
Oseen (1927), Burgers (1941, 1942, 1943), Hocking (1959) and Kynch (1959). 

For the case of spheres moving without acceleration along the line of centres, 
Stimson & Jeffery solved the problem rigorously on the assumption of vanishing 
ly small Reynolds number R, so that Stokes's approximation holds, is. the non- 
linear terms in the equation of motion of the fluid may be neglected. For equal 
spheres their result gives equal drag on both spheres. Their solution gives for the 
ratio of t,he drag to that of an isolated sphere moving with the same velocity: 

4 sinh2 (n + Q) a - (2n + 1)2 sinh2 a 
A,, = Qsinha , = 1 ( 2 n - 1 ) ( ~ n + 3 )  2 ('-zsinh(21L+l)ol+(2n+l)sinhla --) , * n(n+l )  

where cosha = 1/2A. 
Oseen solved the problem approximately using the approximation to the non- 

linear terms which bears his name. His results give different values for the drag 
on the rear and forward spheres. For equal spheres moving along their line of 
centres they are respectively 

where ,8 = (R/2) (ZIA) and the other terms are definedin 93. For this case Oseen's 
drag on the rear sphere is independent of the Reynolds number, while the drag 
on the forward sphere is increased by an amount which is approximately pro- 
portional to R. Curves showing ho for three values of R and As, are shown in 
figure 2. 

Experimental studies of this problem also have been unsatisfactory because 
of the numerous difficulties involved in conducting experiments which give suffi- 
ciently accurate results. Most experimenters attempted to measure the velocities 
of two spheres falling in a viscous fluid at low Reynolds numbers, and from them 
to evaluate the drag on each. They include Hall (1956), Eveson, Hall & Ward 



Pairs of spheres falling along their line of cerztres 81 1 

(1959), Pfeffer (1958), Bart (1959), Happel & Pfeffer (1960) and Isaakyan & 
Gasparyan (1966). Their results are represented in figure 1. Except for Isaakyan 
& Gasparyan they found that the velocities of both spheres, while larger than that 
of an isolated sphere, were equal. Telford & Cottis (1964) attempted to measure 
the drag forces on pairs of spheres directly. They found differences between the 
forces on the forward and rear spheres, but these differences, reproduced in 
figure 5, do not vary reasonably with the distance between the spheres. The 
marked differences among the previous experimental results, particularly be- 
tween Isaakyan & Gasparyan's and the others, led us to undertake experiments 
of our own. 

In  this paper we shall present the results of some experiments which are more 
accurate than those reported previously, and compare these results with available 
theories in order to see the extent to which the simplifying assumptions are 
justified. We shall restrict ourselves to the case of two equal spheres falling along 
the line of centres in the range of Reynolds numbers for which the Stokes approxi- 
mation is normally regarded as holding. It will be shown that there are marked 
deviations from the theoretical expectations. 

2. Experimental procedures 
Each run in the experiment consisted of dropping two equal solid spheres in 

succession along a vertical line in a 12 in. diameter Plexiglas tank containing a 
transparent oil and detecting the times they passed through a series of horizontal 
light beams. Approximately 50 runs were carried out to cover various Reynolds 
numbers and a range of distances between spheres from about 12 radii practically 
to contact between them. 

The critical factors in the experiment are (i) dropping the spheres exactly in 
the vertical, and (ii) the maintenance of constant viscosity which is accurately 
determined. 

The first of these was achieved by using a specially built precision mechanism 
in which each sphere was held by two arms ending in knife-edge pins in a position 
controlled by micrometer screws. The arms could be raised and lowered without 
affecting the horizontal positions of the spheres. The two spheres were placed in 
the arms and positioned so that their centres were as nearly as possible in a 
vertical line, and then the arms were lowered into the oil. A time-delay relay 
provided the possibility of releasing the upper sphere at  a variable time interval 
after the lower. This enabled the initial separation of the spheres to be varied. 

Several methods were used to estimate the precision with which the spheres 
could be positioned in a vertical line. While a strict evaluation of the deviation 
proved impossible, it is estimated that the deviation was always less than 0.3 mm, 
which was about one-twentieth the diameter of the smallest sphere used. 

The oil used was Altavis 210, which has density 0.8685 g/cm3 and kinematic vis- 
cosity 53.90 Stokes at 20 "C. While this oil was chosen because its viscosity varies 
less with temperature than most other fluids, a change of 0.05 "C corresponds to 
almost 0.3 yo in viscosity in the temperature range occurring in the experiment. 
For this reason the temperature was not allowed to vary more than this amount 
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during a run. Before each experiment the oil was circulated through an external 
pumping system to stir it  thoroughly. During each run the temperature was 
monitored with thermocouples and if it changed more than 0.05 "C the run was 
terminated. 

The position of the spheres as a function of time was determined by a series of 
ten horizontal light beams approximately 5 em apart. The vertical distances 
between the light beams at the centre of the tank were determined to within 
0.01 em by several means, including use of a single sphere of extremely small 
Reynolds number falling at  terminal velocity and the lowering of objects attached 
to wires the length of which could be measured accurately. The light beams were 
positioned in a vertical plane using a plumb on a fine wire. The interruptions of 
each light beam as the spheres fell were detected by a photocell at  the side of the 
tank opposite the source. The interruption actuated a signal which was recorded 
on a dual-channel strip chart recorder, the second channel of which recorded a 
100 Hz signal. In  this way the time each sphere passed each light beam was de- 
termined to an accuracy of 5 x lO-3sec. 

Experiments were carried out using spheres of the following materials and 
diameters-stainless steel, kin. (0.635 em) and &in. (0.795 em); tungsten car- 
bide, &in. (0-555cm), %in. (0.635 em) and &in. (0.714cm). The spheres were 
carefully checked to make sure that the pair numbers in each run were identical. 
For instance, the masses of the members of a pair differed by less than 0.05 %. 
The diameters were accurate to within 

No correction for wall effect was applied in our data. We recognized that for 
the sizes of spheres and tank used the theoretical expressions for wall correction 
for the velocity of a single sphere is about 4 %, and that it has been suggested 
(Happel & Pfeffer 1960) that the correction for a pair of spheres is about twice 
that for a single sphere. However, these theories were derived using the Stokes 
approximation, and since our experiments very early showed it not to be valid 
even for the smallest Reynolds numbers used, we considered it inappropriate 
to apply the correction to our data. Fidleris & Whitmore (1961) showed that for 
a single sphere the wall correction goes down with increasing Reynolds number. 
Our velocity measurements thus should be corrected by some factor smaller than 
8 %. How much smaller we cannot say, but it is likely that it is not much larger 
than the 1 yo innate uncertainty of our measurements. 

in. 

3. Evaluation of the data 
Each run gave the time of passage of the spheres at  fixed positions along the 

vertical. To compute the velocities and accelerations, and in particular to com- 
pare the viscous-drag forces on the two spheres as a function of the distance 
between them, it was necessary to interpolate between successive positions and 
times. Plots of the distance versus time suggested that the data could be repre- 
sented by polynomials. To allow for variations of accleration with time, fourth- 
order polynomials were used. The coefficients were evaluated for each run by the 
least squares method, using the IBM 7094 computer. 

From the polynomial expressions for the positions it was possible to determine 
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the velocities and accelerations of the spheres at every moment and the centre- 
to-centre separation. To evaluate the drag forces it is necessary to consider the 
equations of motion of the spheres. 

We shall use the following notations: 

A = radius of sphere, 
ps  = density of spheres, 

pm = density of oil, 
p, v = dynamic and kinematic viscosity of oil, 

= velocity and acceleration of upper sphere, 
v, .3 = velocity and acceleration of lower sphere, 

F ,  f = drag force on upper and lower sphere, 

m'g = (4/3)n-A3(ps-p,)g, net gravitational force on spheres, 

V ,  

R = 2Av/v, the Reynolds number (of the lower sphere), 

m = (4/3)nA3pp, = mass of spheres, 

Fs, fs = 6n-pA V ,  Stokes law drag force on upper and lower sphere, 
U = 2A2(p, - p,) g/9p terminal velocity of single sphere falling under 

Fa = 6npAU = rn'g, Stokes drag force on isolated sphere falling at  terminal 
Stokes drag force, 

velocity, 
A = F/F,, h = f / f s ,  

1 = distance between centres of spheres. 

The equations of motion of the spheres are then 

m p  = m'g-F, m.3 = m'g-f. 

If we have evaluated and .ir experimentally we can evaluate F and f from these 
equations. 

Since the interaction between the spheres was expected to be a function of the 
distance between them, the various results were plotted against the separation 
1. Distances were expressed non-dimensionally by dividing by A,  velocities by 
dividing by U, and accelerations by dividing by m'glm. 

4. Results 
For all sizes of spheres used in the experiment, with R ranging down to 0.06, 

the upper sphere moved faster than the lower one and tended to overtake it, and 
both of them accelerated as the distance between them decreased. Because of the 
changing velocities the value of R is different for each sphere and changes as the 
run proceeds. Consequently the results of each run cannot be identified with a 
single R. For this reason the results were grouped by ranges of R, using the values 
for the lower sphere. The groups used are (i) 0.060 6 R < 0-085, (ii) 0.085 < 
R Q 0.150, and (iii) 0-169 < R < 0.216. To obtain the average curve for each 
group the curves for velocity, acceleration and drag force for the individual 
runs were plotted against ZIA, and average values computed for specified values 
of l /A.  
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It should be mentioned that VjU and v/U depended only on R and l /A and 
were independent of whether steel or tungsten carbide spheres were used. 

The results are shown in figures 1 to 5 .  In  these figures are represented the 
velocities, accelerations, and drag forces and their differences (lower to upper 
sphere) as functions of distance between the spheres. 

In  figure 1 the velocities of the spheres for the three groups are shown together 
with the results of previous experiments. The general pattern of our results con- 
forms to those of the earlier workers. The velocities of both spheres falling in a 

I/A 

FIGURE 1. Variation of the velocity with distance between spheres. Results of present 
experiments and experiments cited in literature. 
--- , results in literature. PI, Isaakyan & Gasparyan, upper. W I , ~ ,  Isaakyan & Gas- 

paryan, lower, R = 0.08. v~,,, Isaakyan & Gasparyan, lower, R = 0.16. v,, Hall and 
Eveson et al., R < 0.10. X ,  Bart, 0.015 < R < 0.050. 0, Pfeffer and Happel & Pfeffer, 
0.008 < R < 0.028. A, Pfeffer and Happel & Pfeffer, 0.049 < R < 0.187. 

-, present results. V,,  upper sphere; wl, lower sphere; 0.060 < R < 0.085. - -, P,, 
upper sphere; v,, lower sphere; 0.085 < R < 0.150. . . . , Ys,  upper sphere; w9, lower sphere; 
0.169 < R < 0.216. 

pair are greater than the terminal velocity of an isolated sphere, and the excess 
is greater the smaller their separation. Like Isaakyan & Gasparyan’s results, but 
unlike the others, the upper sphere fell faster than the lower in all groups, and the 
lower sphere fell faster for smaller R than for larger R for 1/A greater than five. 
Unlike Isaakyan & Gasparyan’s results, the upper sphere also fell faster for 
smaller R than for larger R for 1/A greater than five, and both V and v tend to be 
smaller for smaller R than for larger R for smaller values of l /A than four. 

Corresponding to the increase of velocities with decrease in l /A  the drag-force 
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coefficients (figure 2) decrease as .?/A decreases. The excess speed of the upper 
sphere (figure 3) increases as the spheres get closer together, as do the accelera- 
tions (figure 4) and the difference in drag (figure 5). 

The variation with R also changes as the spheres get closer together. A t  
values of l /A greater than four or five the drag-force coefficients A and h are 
reduced most by the presence of the second sphere for the lowest Reynolds num- 
ber group; at  smaller l /A  the curves for the larger Reynolds number groups have 
a larger slope and tend to cross toward lower values. The accelerations are larger 
for larger R; the values for group (iii) were too high to fit in figure 4. For small 

0.900 - 

0.800 - 
c 
4- 

0.700 

'03 .,... 

0.600 I I 1 I 1 I I I I 1 I 
2.0 3 0  40 5.0 6.0 70 8 0  90 100 11.0 12.0 

IIA 

FIGURE 2. Variation of the drag coefficient with distance between spheres of a pair. 
Comparison of present experimental results with theoretical results of Oseen and Stimson 
& Jeffery. 

Theory, AsJ: Stimson & Jeffery. A,, Oseen, upper sphere. A,,, Oseen, lower sphere; 
R = 0.06. Aoz, Oseen, lower sphere; R = 0-12. A,,, Oseen, lower sphere; R = 0.20. 

Experiment: present results. A,, upper sphere; A,, lower sphere; 0.060 < R < 0.085. 
A,, upper sphere; A,, lower sphere; 0.085 < R < 0.150. A,, upper sphere; A,, lower sphere; 
0.169 < R < 0.216. 

values of 1/A the acceleration is much larger in group (ii) than in group (i), but 
as 1/A increases the acceleration in group (ii) decreases more rapidly than in 
group (i), so that both approach zero. The difference between upper and lower 
sphere velocities also increases with R;  again this effect is more pronounced at 
small Z/A values. In  general, the effect of changing R is much larger, for all the 
quantities studied, when the spheres are close together. 

The experiments demonstrate clearly that the motion of the upper sphere is 
different from that of the lower one, for the 1/A range investigated. It was found 
that the drag force on the upper sphere is always less than on the lower sphere; 
consequently the velocity and acceleration of the upper sphere are always larger 
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than the corresponding values of the lower sphere. These differences increase for 
small separations for all the three groups and for a fixed separation they increase 
with R. 

4 0 ~ 1 0 - ~  

OQ6 t 

- v 2  
\ 

0.05 

OQ1 t 
01 I I 1 I I I I 1 1 I 
2.0 30 40 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

IIA 

FIGURE 3. Difference between velocities of upper and lower sphere of a pair as function of 
distance between them. Comparison of present results with experimental results of 
Isaakyan & Gasparyan. (V - w ) ~ , ~ ,  Isaakyan & Gasparyan, R = 0.080; (V  - w ) ~ .  2, Isaakyan 
& Gasparyan, R = 0.160; Vl-wl, present results, 0.060 < R < 0.085; V2-w2, present 
results, 0.085 < R < 0.150; Va--u3, present results, 0-160 6 R < 0.216. 

p” 

11‘4 

FIGURE 4. Variation of the acceleration with distance between spheres of a pair. Present 
results. P,, upper sphere; d,, lower sphere; 0.060 < R < 0.085. v2, upper sphere; 02, lower 
sphere; 0.085 < R C 0.140. 

Since R is quite small for all three groups, the expectation would be that 
Stokes’s approximation, and therefore the Stimson-Jeffery solution for the mo- 
tion of a pair of spheres, would be valid. As we have already seen, the experi- 
ments give different drag forces for the two spheres, contrary to the S-J theory. 
In figure 2 the ‘xxx’ line shows h as evaluated by the S-J theory. It is practically 
coincident with A,, the drag coefficient for the lower sphere for group (i), for 
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3-6 < l /A  < 7.6. For smaller l /A,  A, is less than A,, and for larger separations 
A, > Asj .  For all values of l /A  A, < As,, but the difference decreases with 
increase in l /A .  For larger R, groups (ii) and (iii), the values of A, A deviate 
more from A, than A, and A,. 

Oseen's approximate solutions for A, A are also shown in figure 2, for three 
values of R. They depart from the StimsonJeffery solution qualitatively in the 
same way as our experimental results, namely lower a t  small l / A  and higher at 
large l /A.  Both in the experimental results and in the Oseen theory A increases 
with R and the rate of variation of A with l /A  is almost the same for 1/A > 7.0, 
although the Oseen values are smaller than the corresponding experimental 
values. For small l / A  the difference between the Oseen solutions and the experi- 
ment are larger, but since the Oseen solution neglects terms of the order A2/P, 

10x10-5 - 

2x10-5 - 

liA 

FIGURE 5 .  Difference between non-dimensional drag force (in units of rn'g) on forward 
(lower) and rear (upper) sphere as function of distance between them. Present results 
(curve) compared with experimental results of Telford & Cottis. -, present results, 
0.060 < R < 0.085; , Telford & Cottis, R = 0.088. 

large deviations are to be expected. In  Oseen's solution A does not vary with 
Reynolds number, but the experiments showed that A increases with R, though 
not as much as A. 

The experiments by Hall (1956)' Pfeffer (1958), Bart (1959), Eveson et al. 
(1959) and Happel & Pfeffer (1960), the results of which are shown in figure 1, 
were designed on the assumption that R would be so small that the two spheres 
would fall with equal constant speed, and thus only the avera,ge speed of one of 
them and their separation was measured. Thus they could not by the nature of 
their experiment find different speeds for the two spheres. Isaakyan & Gasparyan, 
however, found that the upper sphere fell faster than the lower, and our experi- 
ments corroborate this. Also, the first group of experimenters assumed that there 
would be no difference for different Reynolds numbers in the range they worked 
with and considered that the scatter of their data was due entirely to experimental 
uncertainty. However, when one looks at  their data in the light of the Reynolds 
number effect found in our experiments one sees that some of the scatter is just 
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the reflexion of the differences in R. In  fact the various points agree remark- 
ably well with our results, generally falling not far from our curve for the corre- 
sponding R. 

Isaakyan & Gasparyan found the velocity of the lower sphere to depend on R, 
but that of the upper sphere to be independent of R, in accord with Oseen’s 
theoretical expression. Their values are somewhat higher, particularly for small 
ZIA, than ours. They carried out the experiment by taking motion pictures of the 
falling spheres, a method which is subject to fairly large errors in determining the 
successive positions of the spheres. The uncertainties of their method, together 
with the closeness of the measurements by the other investigators to ours, lead 
us to believe that the values we have obtained are more nearly correct. 

5. Conclusions 
The striking result of our experiments is that even for the smallest values of 

R ( N 0.06) the drag coefficient for the upper sphere is significantly smaller than 
that for the lower sphere. Thus the range of validity of the Stokes approximation 
is much more limited than commonly considered. This conclusion was reached 
previously with respect to the drag on a single sphere (Maxworthy 1965; 
Pruppacher & Steinberger 1968). 

Another new result is the fact that the drag coefficient of the upper sphere 
varies with Reynolds number. Oseen’s theory does not give this effect for line- 
of-centres motion, and previous experiments did not discover this deviation from 
Oseen, even for larger values of R. However, from the standpoint of physical 
intuition one would expect that the deviation from Stokes drag would be greater 
for the upper as well as the lower sphere for larger Reynolds number. This sug- 
gests that the failure of the Oseen theory to predict it  is a deficiency of the model 
assumed or else of the method of approximation of the solution. 

On the other hand, the fact that for the smallest R group h is very close to 
A,, over a considerable range of distances indicates that the Stimson-Jeffery 
solution comes fairly close to representing the real situation for the lower sphere 
for this value of R. The equality of drag on the two spheres predicted by the Stokes 
approximation appears to require much smaller values of R, however, 

The general behaviour of h is quite well represented by the Oseen expression, 
even though the experimental values are somewhat larger. In  particular, the 
variation with Z/A is well represented for large ZIA, and the variation with R is 
in the right sense. The variation of A with Z/A is similarly represented, but of 
course its variation with R is not predicted in the Oseen solution. 

The cross-over of sense of the variation of A and h or V and v with R as Z/A in- 
creases can be explained in terms of the difference in effect of the inertial terms 
in the fluid equation for large and small separations. For large Z/A the effect of 
non-zero R is in the direction of increasing hand Aabove unity, and the amount of 
increase is larger for larger R. As the distance between the spheres gets smaller, 
the effect of their interaction is to reduce h and A, and the amount of reduction 
is greater for larger R. When they are sufficiently close together the reduction 
effect dominates and the cross-over occurs, with smaller A, A for larger R. 
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While the Reynolds number of the smallest group we were able to study was 
somewhat higher than that of the most frequent cloud drops, the fact that for this 
group the upper sphere was constantly overtaking the lower one suggests that 
even for the smaller cloud drops equal drops may tend to coalesce. It will require 
further experimentation to find the limiting size for non-zero collision efficiencies 
of equal drops. 
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